Total Pages: 4

BT-6/M-20

36127

OPERATION RESEARCH Paper–ME-306 N Opt. (I)

Time : Three Hours] [Maximum Marks : 75

Note: Attempt only 5 questions, selecting at least *one* question from each unit. Unless stated otherwise, the Symbols have their usual meaning in context with he subject. Assume suitably and state, additional data required, if any.

UNIX-I

- Explain with the help of examples, the necessity and scope of Operations Research in industry.
- **2.** Solve the following L.P.P.:

Minimize Z = 4a + 2b

subject to : $3a + 1b^3 27$

 $-la - lb \pm -21$

 $|a+2b|^3$ 30 and both a and b are

UNIT-II

3. Four factories, A, B, C and D produce sugar and the capacity of each factory is given as: Factory A produces 10 tons of sugar and B produces 8 tons of sugar, C produces 5 tons of sugar and that of D is 6 tons of sugar. The sugar has demand in three markets X, Y and Z The demand of market X is 7 tons, that of market Y is 12 tons and the demand of market

36127/PDF/KD/1775

[P.T.O.

15

Z is 4 tons. The following matrix gives the returns the factory can get, by selling the sugar in each market. Formulate a transportation problem and solve for maximizing the returns.

				_
	Profit in Rs. per ton			Availability
	(× 100) Markets			in tons
	X	Y	Z	
Factories				*(
A	4	3	2	10
В	5	6	10	8
С	6	4	(13)	5
D	3	5	4	6
Requirement	7	1890	4	Sb = 29
(tons)		Mili		Sd = 23
		N		

15

4. A small project is composed of 7 activities whose time estimates are listed below. Activities are being identified by their beginning (*i*) and ending (*f*) node numbers.

	Activities	Time in weeks		
i	j	t_0	<i>t</i> 1	t_p
1	2	1	1	7
1	3	1	4	7
1	4	2	2	8
2	5	1	1	1
3	5	2	5	14
4	6	2	5	8
5	6	3	6	15

- 1. Draw the network.
- 2. Calculate the expected variances for each.
- 3. Find the expected project completed time.

15

UNIT-III

- 5. With the help of a single server queuing model having interarrival and service times constantly 1.4 minutes and 3 minutes, respectively. Explain discrete simulation technique taking 10 minutes as the simulation period. Find from this average waiting time and percentage of idle time of the facility of a customer. Assume that initially the system is empty and the first customer arrives at time t = 0.
- **6.** (a) Write a note on basic structure of queuing models citing some commonly known queuing situations.
 - (b) Explain with an example, the steps in decision theory.

5

UNIT-IV

- 7. In a departmental store one cashier is there to serve the customers. The customers pick up their needs by themselves. The arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming Poisson arrival rate and exponential distribution for service rate, find:
 - (a) Average number of customers in the system.
 - (b) Average number of customers in the queue or average queue length.

36127//KD/1775

3

[P.T.O.

- (c) Average time a customer spends in the system.
- (d) Average time a customer waits before being served.
- **8.** In a certain game, player A has three possible courses of action L, M and N, while B has two possible choices P and Q. Payments to be made according to the choice made.

Choices	Payments
L, P	A pays B Rs. 3
L, O	B pays A Rs. 3
M, P	A cays B Rs. 2
M, Q	B pays A Rs. 4
N, P	B pays A Rs. 2
N, Q	B pays A Rs. 3

What are the best strategies for players A and B in this game? What is the value of the game for A and B?